Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering.
نویسندگان
چکیده
Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model.
منابع مشابه
Dynamics of field-induced ordering in magnetic colloids studied by new time-resolved small-angle neutron-scattering techniques.
The reversal of magnetic moments of nanoparticles in concentrated Co ferrofluids was monitored in an oscillating magnetic field by new time-resolved stroboscopic small-angle neutron-scattering techniques. Time resolution in the micros range was achieved by using a pulsed beam technique, TISANE, while in continuous mode resolution was limited by the wavelength spread to about 1 ms. The frequency...
متن کاملStructural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method
The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray dif...
متن کاملField-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.
The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and ana...
متن کاملAggregation in ferrofluids studied by Neutron Small Angle Scattering
2014 Neutron Small Angle Scattering has been used to follow processes of particle aggregation in ferrofluids under various conditions of temperature and externally applied magnetic field. Cobalt particles, stabilized in toluene by one of two surfactant materials, showed neutron scattering characteristic of highly aggregated systems. Low temperature quenching in a strong magnetic field caused ph...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2003